POWER DISSIPATION AND KINETIC RELATIONS
ON VELOCITY-DISCONTINUITY SURFACES
IN COMPRESSIBLE RIGID-PLASTIC MATERIAL

I. S. Degtyarev and V. L. Kolmogorov UDC 539.214

Wave surfaces of strong velocity discontinuity are considered in an isotropic compressible rigid-
plastic material.

For associated laws of plastic flow [1, 2] formulas are derived for power dissipation; continuity is
proved of the components of the stress tensor and bounds are established for velocity discontinuities on
those surfaces.

The obtained formulas are applied when extrusion is considered of a compressible material from a
container through a smooth wedge-like unit. '

1. A three-dimensional rigid-plastic body is considered with plasticity condition given by
Si]'Sij = 2k* (Sij =05 1/35kk6ij) (1.1)

where ¢ is the stress tensor, 8;; is the stress-tensor deviator, k is the physical constant of the material,
5ij is the Kronecker symbol. It is assumed that for the material under consideration the following function
exists:

e=9(0) (e="Ysey, ="y (1.2)
In the above ejj are the components of the deformation tensor.
It follows from the generalized Mises theorem [1] that
& =My (h=H[2%, s,/ =e; — s, (1.3)

where g;; is the tensor of the deformation rate, €ij' is the deviator of the deformation-rate tensor, H=
(Zsij'sij 'gi/ 2 is the intensity of the displacement deformation rates.
The rate € of volume change appearing in the physical equations (1.3) is found by differentiating the
function (1.2) with respect to time, that is,
dop ds
&= d%ﬁ (1.4)

2. It is assumed by us that the material with properties described above has a surface X given by
equation f(xi, t) =0 on which the displacement rates vi suffer discontinuity.

Let us denote by vy the component of the displacement rate of the surface Z in the direction of its
outer normal n and by vy the projection of the velocity vector of particles of the medium on that normal.

Since stationary discontinuities in velocity are inconsistent with the continuity assumption of the me-
dium, it is assumed that vy = vj. It is supposed that the material moves across the surface Z with velocity
Vp > Vg

It is known [3] that on the surface T the deformation rates satisfy the relations

&35 = Y ([vs] n; 4 [v;] vy) (2.1)
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In the above 3 is a proportionality multiplier, [v;]=v;" —v;~ is the
difference between the values of velocity taken on each side of the sur-
face Z, n;j are the projections of the unit vector of the normal to that sur-
face on the rectangular Cartesian coordinate axes x;.

A local system of coordinates (x, y, z) is introduced at any point
of the surface Z (Fig. 1) in such a way that the normal n is directed along
the z axis.

One then obtains for the direction cosines
Ny =ny, = 0, n, =1 (2.2)
It follows from the relations (1.4), (2.1) and (2.2) that

lsxx—_—sxyzeyy=0’ Exz='\h[vx]=f[=0 (2 3)

eyx =P vyl + 0,8, =29 [v,] 50

Hence it follows that in a compressible material side by side with discontinuities in the velocity com-
ponents which are tangential to the surface 3, a discontinuity may also occur in its normal component.

Let us assume that on the surface T there is a discontinuity of stress oy
The contacting stresses must be continuous on the surface, that is,
[os5ln; = 0 (5] =0, —5,/7) ' (2.4)
In the local coordinate system (2.2) the relations (2.4) become ‘the equalities
oyl =lo,) =1lo,} =0 (2.5)
It follows from the relations (2.3) and (2.5) that on the surface T one has
[o;le; =0 (2.6)
For the fluidity condition (1.1} it follows from the maximum principle of dissipation rate of mechan~
ical energy that
lo5] 8, >0 (2.7
Comparing (2.6) and (2.7) one can see that on the surface T there is the equality
fo;l =0
The latter indicates that for convex fluidity conditions on the surface of velocity discontinuity the
stresses are continuous in a compressible material.
The power dissipation for a thin transition layer in which the velocities v; suffer rapid though con-
tinuous changes is given by

hy

D= SOHSH do = S S si,-sij dz d2 (2.8)

© X —hy
where w denotes the volume of the infinitely thin layer.

Since the stresses o-i'- are continuous on the surface Z, the hydrostatic pressure is also continuous
on Z, and consequently it is constant across the layer thickness.

Using the latter as well as the relations (1.1) and (1.2) one finds from the formula (2.8) that

i) 2
D= k§ Sh (261'e1)dzdS + 3§ o ’Sl edzdy (2.9)
—hyg A =

—hy
It is known [4] that the deformation process in many cases can be described by
v v
(ve— vs7) azy = (vy — vy") 'ﬁzi

v dv
0y — v) 5= = 0, — v,) 2L

D) v (2.10)
(vz —v;) 'T:- = (vx — ;") Tzl‘
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Solving the above three differential equations (2.10) for the unknown functions vy, vy, v, one finds
Ve =C +u(z),v, = C; + Co% (2), v, = Cy + Cyx (3) (2.11)
where the constants C, Cy, Cy are given as follows:
C=v", C;=v,, C3 =0,
The conditions on the boundaries of the layer are given by the equalities
®(—h) =0, % () = [al, Cyx (h) = vy, Coix (hg) = [v,] (2.12)

By using the relations (2.8), (2.11) and (2.12) a formula is obtained from (2.9) for power dissipation
on the surface of velocity discontinuity in a compressible rigid-plastic material:

D= %& (3 (st — V)2 + 3 (gt — v, ) + 4 (0 — v, )Y dE +S 5 [v,] d3 (2.13)
. z
3. A deformable material is considered whose limit state is given by
S8 = 2 (k — 00)® <k/®) (3.1)

In the above 6 is the physical-mechanical constant of the material.

The associated law of plastic flow is assumed to be of the form [2]
gy =N (08;; - Si;/2V 81815 12) W = Vep;1 GO +79) ' (3.2)
Employing the relations (2.8), (3.1), and (3.2) one can represent the power dissipation for a thin tran-
sition layer on the surface Z by the expression

by
k "
= Gy | (e a3 s

From the last expression, using (2.3), (2.11) and (2.12), one obtains

k

= T (05 P 0 =0 20 — v 6.9

The formulas (2.13) and (3.4) are a generalization of the familar expressions [5, 6] for power dissi-
pation on surfaces of velocity discontinuity to the cases of deformable compressible materials.

It is noted that the formulas (2.13) and (3.4) were obtained for two types of plastic compressibility of
the material of quite a different type.

The compressibility which appears in the derivation of the formula (2.13) is fully determined by ex~
periments on even, uniform compression. The compressibility used in the derivation of the formula (3.4)
is related basically to the deformation of the material and cannot be obtained from the experiments on
even, uniform compression.

In the case of planarly deformable compressible material the plasticity condition (3.1) assumes the
form [2]

f="15 (61 + 63) sing® 4 ¥ (011 — G92)? /& + 615 — oS @° =0
k

o _ . s o 30 o (1 —1202\: (3.5)
ST ey PN T Ty O —(_1—362) )

If one assumes that there exists in the material a curve L of velocity discontinuity then using (3.2)
and (3.5) the power dissipation for a thin transition layer on the curve L can be given by

b= (T%%Ei(zaxxz + 2842 4 48 /) PdS ‘ ‘ (3.6)

In the above S denotes the area of the infinitely thin layer.

By extending our derivation of the formulas (2.13) and (3.4) to the case of planarly deformable ma-
terial an expression is obtained from the formula (3.6) for power dissipation on the discontinuity curve L:

- m‘iﬁvﬁ (@t — v + 2" — vy )phdl @.7)
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4. Following [7] the relations will be established on the surface of
velocity discontinuity which form constraints on the possible discontinuities
of the velocity vector arising in a flow of particles of a compressible ma-
terial across the surface Z.

To this end, the relations (2.1) are multiplied by nj- Then one finds

P [v;] = eyn, — P [bi]nj”i (4‘.1)

Substituting the value of the difference [vij] from (4.1) into the relations
(2.1) and bearing in mind that the material is compressible one finds

85 = Bipfly, + Ejpllilty, — Bgpltil; (4.2)

Let x;=x;(tg)(i=1, 2, 3) be parametric equations of the surface T and tgple =1, 2) the curvilinear co-
ordinates on that surface. Then the partial derivatives of the velocity v; with respect to the coordinates Xj
can be written as [8]

dv; do, dv, dxj

A T NP B Mt B :
5z, = @ M8 F (4.3)

where dv;/dn is the derivative of the velocity vi along the normal n to the surface Z, and gO‘B (a, =1, 2) is
the contravariant metric tensor of the surface Z.

Substituting the values of the partial derivatives avi/8xj in (4.3) into the Cauchy relations

& =y (V3,5 + ;)
one obtains
Bvi dz

1 [dv; dv; 1 : dv; Oz,
o4 . . A e j j i
5= 3 (dn R relC ol S (Otabatp + o atﬁ) (4.4)

Comparing in the latter expressions the subscripts i and j one finds

dv dv; Oz,

—dn—’- n; = gy — g% at: '5;@‘ (4.5)
Using the relations (4.4) and (4.5) one obtains for the derivative dv;/dn the expression
dv, ov, Oz, dv, Oz,
g = 2eymt gee (5-[;— 57; fy — a_t:_ 3, nk) — Lyl (4.6)

The values of dv;/dn from (4.6) are now inserted into the relations (4.4).

Then using the relations (4.2) and after some transformations one obtains a system of differential
equations which must be satisfied by the components of the velocity vector on the surface 3:

dv, Oz, dv; oz, av’_ oz, Oz,
g+ (3?: Gt; + 6ti_ 3, ) =g Bt: "'f(atﬁ ;i + 6t; ni) v (4.7)
The relations (4.7) are multiplied by 0x;/9tr, 9xj/8t.
Then using the familiar identity [8]
dx, Oz,
o 2 I 8., -
k at, Eﬁ— = 8;— nin;

one obtains on the surface T three independent relations which at the discontinuities are of the form

o, T w0 (4.8)

The relations (4.8) represent constraints on the possible changes in the discontinuities of the com-
ponents of the velocity vector of the displacement on the surface 3.

5. As an example of the application of the obtained relations (3.7) and (4.8) we consider a setting
process of extrusion of a compressible rigid-plastic material from a container through a smooth wedge-
like unit (Fig. 2).
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Considering the lines /4 and /, as lines of velogcity discontinuities it is assumed that in thin transition
layers which represent the discontinuity lines /; and J; the material undergoes during its plastic flow an in-
tensive change of volume and having passed these lines it moves like a rigid body in the regions II and II.

It is also assumed that the material does not suffer any plastic deformation in the region I.

In accordance with our assumptions a kinematically admissible velocity field is selected in the re-
gions I, II and I1I respectively of the form

Uy =@, Up =0; 0, = 8,008y, UV = — @y SIN P; 0, = @, 1, = 0 (5.1)
In the above a, is the rate of material supply at the deformation center.

Since the material flows from the region I to the region II and from the region II o the region Il we
determine the power dissipation on the discontinuity lines I; and /.

To this end we denote on the lines I; and I, the normal velocity component by vy, and the tangential by
Vi

On the discontinuity line I; the jump differences for the normal and tangential velocity components
are

[ = {(a3 cos y — ay) tg @ — a, sin } cos & (5.2)
[} = {(as cos y — a,) etg @ - a, sin 7} sin «

By inserting (5.2) into the formula (3.7) and by integrating one obtains the power dissipation on the
li line:

H 0 o . .
D, = sintx ﬁ%—ﬁ; {[(as cos T — a;) ctg & - @, sin 7}? sin’ @ +
+ 2[(@z 087 — a;) tga— aysin y]cosPal (5.3)

For the tangential and normal velocity components on the discontinuity line I, one has

[va] = {(a3 c08t — a3)tg B -+ 4, sin 7} cos B (5.4)

[v] = {(as — a5 cos T) otg B -+ ay sin 7} sin B
Substituting the corresponding values of (5.4) into (3.7) and integrating one finds
h ¢° cos @° ’
$in B (1 4 sin? ¢°)¥? _
+ 2[(az o8 7 — ag) tgB -+ a5 sin 7]* cos® B} (5.5)
By setting the origin of the Cartesian coordinate system x,0x, at the point M one obtains parametric
equations of the discontinuity lines I, and I, respectively:

{{(as— aycos7) ctgP + a5 sin7]* sin® B

g =

zy =k, xy=kot; 3 = kgt, 7, =\k4t (5.6)

In the above t is an arbitrary parameter, ky(m=1, 2, 3, 4) are constants which satisfy the conditions
‘ kl/kz*—“——tgoc‘, kylky=tghp (5.7
The kinematic relations (4.8) together with (5.6) and (5.7) take the form

] — (wltga =by, ] + Wltgh = by (5.8)

To determine the arbitrary constants by and by one uses the obvious condition which follows from the
symmetry of the problem and which imposes constraints on the velocity discontinuities at the point M:

'[Ull = a3z — 4y, [Uz] =0 (5-9)
From (5.9) one obtains
by = by =a;— a, (5.10)

Using the relations (5.1), (5.8) and (5.10) one finds
: a, = a, / (cos y — sin y tg B) 5.11)
as =, (cos y -+ sin y tg &) / (cos y — sin y tg B) :
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If one disregards friction on the container walls, then in view of the fact that the power of the external
and internal forces is the same, one finds

Pa, = 2 (D, + D») (5.12)
where P is the extrusion force.

Using the relations (5.3), (5.5) and (5.11) one determines from (5.12) the magnitude of the extrusion
force:

2C°cos 9°
= Hy[(d — ¢ b 2 2 2 2
P (1 +Sin2q)°)1/2(0tg']’—tgﬁ) { 0[( ch g(l) + z(tg B+ Ct/g a)] +
+ hl(tgactgB— 1) + 2 (ctg?B + tg2a)]¥} (5.13)
From geometrical considerations (Fig. 2) it is not difficult to obtain that
ctga = H"H;—h ctgy — %Cth (5.14)

The relation (5.14) can be employed to eliminate the angle ¢ from the formula (5.13) and to use the
minimum extrusion force to determine the angle 8.
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